

PRI-8800 Automatic Varying Temperature Incubations and Continuous Soil Respiration Measurement System

A reliable and accurate estimate of the temperature sensitivity (Q_{10}) of Soil Organic Matter (SOM) decomposition is essential for predicting the feedback between the global carbon cycle and climate change. Traditional methods for estimating Q_{10} include the Constant Temperature Incubation and Discontinuous Measurements (CDM) mode and the Varying Temperature Incubation and Discontinuous Measurements (VDM) mode. Robinson (2017) indicates that using more than 20 temperature points can provide a more precise Q_{10} estimate. Currently, no suitable instruments are available for this specific application. By integrating the rapid Varying Temperature Incubation and Continuous Measurement (VCM) mode, the patented PRI-8800 offers a novel approach to Q_{10} estimation. The VCM mode eliminates the underestimation errors associated with both the CDM and VDM modes, provides a more accurate and quicker estimate of the temperature response of SOM decomposition, and is suitable for large-scale Q_{10} assessments.

Introducing the PRI-8800, a ground-breaking solution for continuous soil respiration measurements. This innovative system combines laboratory incubations for disturbed and undisturbed soils at different temperatures. It seamlessly integrates with various greenhouse gas (GHG) and isotope analyzers. Specially designed soil sample bottles allow the loading of both disturbed and undisturbed soils. The optimized temperature threshold provides a significant advantage for conducting soil freeze-thaw experiments.

Key Features

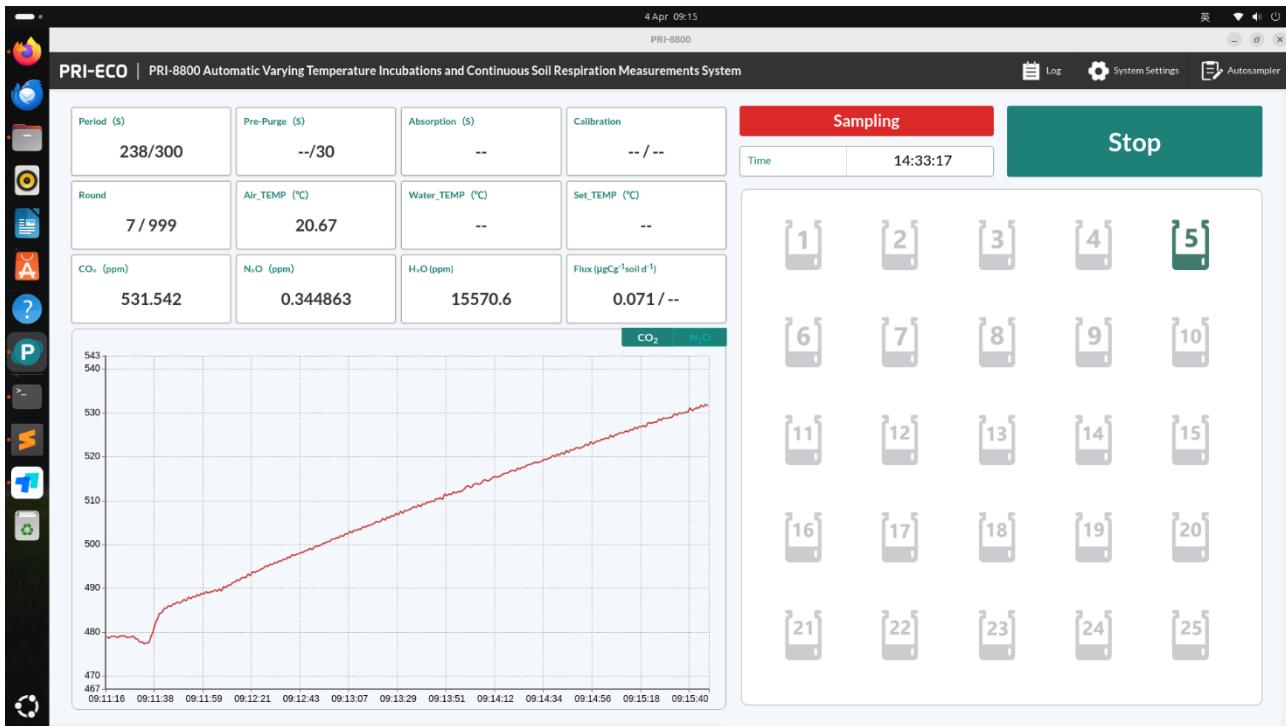
- Varying temperature incubations and continuous measurements
- Excellent compatibility and extensibility with various analyzers
- Automatic temperature control (-15 to 60 °C)
- The temperature fluctuation is better than 0.05 °C

- Pre-treatment to eliminate the effect of the initial high concentration
- Inherent channels for isotope and concentration calibration

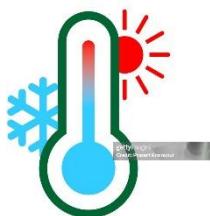
Specifications

Parameter	PRI-8800	PRI-8800 PLUS
Sample Bottle	50 mm D x 80 mm H 80 mm D x 200 mm H (Customizable within 200mm)	50 mm D x 80 mm H 80 mm D x 480 mm H (Customizable within 500mm)
Adapter Ring * (Options)	60 mm D x 35 mm H 90 mm D x 60 mm H	60 mm D x 60 mm H 90 mm D x 60 mm H
Heating Rate Cooling Rate (5-30°C)		1°C / min 1°C / 6 min
Dimensions of Water Bath (Inside)	460 mm W x 460 mm D x 260 mm H	460 mm W x 460 mm D x 530 mm H

Parameter	Specifications
Tray Capacity	36 or 9 samples
Temperature Range	-15 to 60°C
Temperature Fluctuation	± 0.05°C
ACC Temperature	+ 40°C
Refrigerating Capacity @ 20°C BT/20°C AT	2000 W (Standard), 400W (Option)
Autosampler Precision	0.02 mm
Air Temperature Precision	± 0.15°C
Pressure Precision	± 0.05%
Flow Rate	0.9 L/min
Gas Tube	1/8" Stainless or Teflon
System Response time	< 4 s
Calibration Channels	3
Power	100 ~ 240VAC, 50/60 Hz, 1500 W(Heating); 1250 W (Cooling)
Dimensions	762 mm x 950 cm x 1700 mm


Specifications subject to change without notice.

Configuration


The PRI-8800 includes a water bath with a refrigerator and heater system, an autosampler, a sample tray, and 36 sample bottles. It also features a standard CO₂ H₂O analyzer with a 2% CO₂ accuracy.

CE certificate

Experimental Design

1) Temperature Dependency Research: Temperature changes significantly affect soil respiration. Q₁₀ studies are a key focus for many researchers. Robinson (2017) indicates that using more than 20 temperature points can provide a more precise Q₁₀ estimate. This approach addresses the limitation of previous practices where researchers set only 3-5 temperature points (approximately 5-10°C apart)

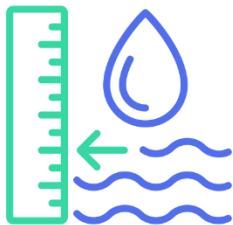
for respiration measurements. This recommendation resolves the issue of high similarity in fitting soil respiration to temperature changes due to fewer temperature gradients in traditional methods, thereby improving the accuracy of different theoretical models or subsequent model predictions.

The PRI-8800 program facilitates the efficient setup of 20 temperature points and measures soil respiration automatically, boosting researchers' productivity. It also allows for the simulation of daily,

monthly, seasonal, or annual temperature variations, further streamlining the experimental process.

Additionally, PRI-8800 supports both isothermal cultivation and the transition between isothermal and varying temperature conditions, increasing its versatility for various research needs.

2) Moisture Dependency Research: Numerous studies have shown that, under constant temperature, Q_{10} is easily influenced by soil moisture levels, exhibiting certain moisture-dependent characteristics. PRI-8800 allows manual adjustment of soil moisture levels and, in its rapid continuous measurement mode, achieves precise soil respiration measurements under different moisture gradients. The logical design of PRI-8800 enables continuous, high-quality measurements of soil respiration under short-term, medium-term, and long-term humidity control conditions.


3) Substrate Dependency Research: The quality of the substrate is closely linked to the Q_{10} . Substrates include natural soils, characterized by factors such as carbon content, nitrogen content, the ratio of easily decomposable to recalcitrant carbon, soil clay content, pH, and salinity. Additionally, external substrates may consist of biomass carbon, microbial populations, various fertilizers, respiration promoters or inhibitors, and isotopic reagents. The rapid online varying temperature cultivation and measurement capabilities of PRI-8800 can expedite certain research processes and yield reliable outcomes. Examples include studies on soil respiration during soil improvement with biochar, the ongoing effects of slow-release fertilizers at various stages on soil respiration, and the response of soil respiration to different improvement measures in saline-alkali soils.

4) Biological Dependency Research: Soil respiration is primarily composed of soil microbial respiration (over 90%) and respiration from soil fauna (1-10%). The soil microbial community significantly influences Q_{10} . It is essential to understand how microbial populations and their quantities change before and after cultivation and the corresponding shifts in soil respiration rates in response to temperature. Additionally, introducing external microbial populations may aid scientists in gaining a better understanding of how biological dependencies affect Q_{10} in soil.

5) **imulation of the Freeze-Thaw Process of Undisturbed Soil:** Climate change has altered the frequency and intensity of soil dry-wet and freeze-thaw cycles. These fluctuations impact soil microbial activities, namely soil water utilization efficiency. While these changes have slightly affected the structure of soil microorganisms, it remains unclear whether a single climate fluctuation, such as the alternation between dry and wet conditions, influences responses to another climate factor, such as freeze-thaw cycles, and how this, in turn, affects greenhouse gas emissions. By conducting a freeze-thaw simulation using PRI-8800 Plus, we aim to obtain clear answers to these questions.

6) **Simulation of Wetland Inundation Depth:** On a global scale, the sensitivity of wetland methane (CH_4) emissions to temperature largely depends on fluctuations in water table levels. In contrast, the sensitivity of carbon dioxide (CO_2) emissions to temperature is not influenced by water levels. How do varying water levels and temperature changes in different wetland ecosystems impact and regulate greenhouse gas emissions from wetlands? Additionally, what methods can we use to quantify wetland greenhouse gas emissions under different water levels and temperature variations? By using the PRI-8800 Plus and conducting controlled experiments focused on water depth and temperature changes, we can explore these relationships more effectively.

Publications

2025

1. Zhou Z, Zhang N, Wang Y, et al. Litter regulates the priming effect of carbon mineralization and its temperature sensitivity during freeze–thaw cycles in alpine swamp meadow soils[J]. *Plant and Soil*, 2025: 1-19.
2. Wang H, Jing H, Ma H, et al. Interactions between fine root-derived dissolved organic matter and K-strategy-dominated soil microbes regulate soil CO_2 emissions in a *Pinus tabulaeformis* plantation under N deposition[J]. *Soil and Tillage Research*, 2026, 256: 106878.
3. Gao M, Hu W, Li M, et al. Response of soil basal respiration rates, microbial attributes, and organic matter composition to land-use change[J]. *Soil Science Society of America Journal*, 2025,

89(2).DOI:10.1002/saj2.70052.

4. Zheng J , Groenigen K J V , Hartley I P ,et al. Temperature sensitivity of bacterial species-level preferences of soil carbon pools[J]. *Geoderma*, 2025, 456. DOI:10.1016/j.geoderma.2025.117268.
5. Zhao S , Chai H , Liu Y ,et al. Earthworms significantly enhance the temperature sensitivity of soil organic matter decomposition: Insights into future soil carbon budgeting[J].*Agricultural and Forest Meteorology*, 2025, 362.DOI:10.1016/j.agrformet.2025.110384.
6. M Liu, Y Yu, Y Liu, S Xue, DWS Tang, X Yang ,et al. Effects of polyethylene and poly (butyleneadipate-co-terephthalate) contamination on soil respiration and carbon sequestration[J].*Environmental Pollution*, 2025, 364.DOI:10.1016/j.envpol.2024.125315.
7. Zhou, X. , Feng, Z. , Yao, Y. , Liu, R. , Shao, J. , & Jia, S. , et al. Nitrogen input alleviates the priming effects of biochar addition on soil organic carbon decomposition. [J]. *Soil Biology and Biochemistry*, 2025, 202.
8. You M, Guo D, Shi H, et al. Microbial nutrient limitations and chemical composition of soil organic carbon regulate the organic carbon mineralization and temperature sensitivity in forest and grassland soils[J]. *Plant and Soil*, 2025: 1-18.
9. Wang C, Ren J, Cui Y, et al. Grazing-N addition interactions drive soil carbon priming and balance via bacterial assimilation in a meadow steppe [J]. *Journal of Applied Ecology*, 2025.

2024

10. Liu Y, Kumar A, Tiemann L K, et al. Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles[J]. *Journal of Soils & Sediments: Protection, Risk Assessment, & Remediation*, 2024, 24(1).DOI:10.1007/s11368-023-03602-y.
11. Yuna Ning, Zhanyi Wang, Cuiping Gao, et al. Effects of Different Grazing Intensities on Soil Respiration Rate and Its Temperature Sensitivity in Desert Steppe. [J]. *Acta Agrestia Sinica*, 2024, 32(10):3233-3240.DOI:10.11733/j.issn.1007-0435.2024.10.024.
12. Liu R , Zhou X , He Y ,et al. A transition from arbuscular to ectomycorrhizal forests halts soil carbon sequestration during subtropical forest rewilding[J].*Science of the Total Environment*, 2024, 946.DOI:10.1016/j.scitotenv.2024.174330.
13. Kang Y, Shen L, Li C, et al. Effects of vegetation degradation on soil microbial communities and ecosystem multifunctionality in a karst region, southwest China[J]. *Journal of Environmental Management*, 2024, 363: 121395.

14. Jun Pan, Yuan Liu, Nianpeng He, Chao Li, Mingxu Li, Li Xu, Osbert Jianxin Sun. 2024. The influence of forest-to-cropland conversion on temperature sensitivity of soil microbial respiration across tropical to temperate zones. *Soil Biology and Biochemistry*, doi:10.1016/j.soilbio.2024.109322.
15. Zheng J, Mao X, van Groenigen K J, et al. Decoupling of soil carbon mineralization and microbial community composition across a climate gradient on the Tibetan Plateau[J]. *Geoderma*, 2024, 441: 116736.

2023

16. Yuanhao Liu, Decheng Xiong, Chen Wu, Yun Wang, Debao Lin, Jinxue Huang. Effects of exogenous carbon input on soil carbon emissions in evergreen broad-leaved forests [J]. *Journal of Forest & Environment*, Vol 43(5), DOI: 10.13324/j.cnki.jfcf.2023.05.006
17. Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. *Geoderma*, 2023, 432: 116385.
18. Xiaoliang Ma, Shengjing Jiang, Zhiqi Zhang, Hao Wang, Chao Song, Jin-Sheng He. Long-term collar deployment leads to bias in soil respiration measurements[J]. *Methods in Ecology and Evolution*, 2023, 14(3): 981-990.
19. Yanghui He, Xuhui Zhou, Zhen Jia, Lingyan Zhou, Hongyang Chen, Ruiqiang Liu, Zhenggang Du, Guiyao Zhou, Junjiong Shao, Junxia Ding, Kelong Chen, Iain P. Hartley. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. *Global Change Biology*, 2023, 29(4): 1178-1187.

2022

20. Mao X, Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. *Soil Biology and Biochemistry*, 2022, 172: 108743.
21. Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. *Ecological Indicators*, 2022, 145: 109749.
22. Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. *Soil Biology and Biochemistry*, 2022, 167: 108589.

~2021

23. Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. *Frontiers in Ecology and Evolution*, 9: 673310.
24. Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. *Soil Biology and Biochemistry*, 154: 108148.
25. Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. *Catena*, 194: 104684.
26. Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO₂ release in different grassland types on the Tibetan Plateau. *European Journal of Soil Biology*, 101: 103250.
27. Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. *Soil Biology & Biochemistry*, 138, 107596.
28. Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid $\delta^{13}\text{C}$ Measurement Technology[J]. *Journal of Resources and Ecology*, 2019, 10(2): 202-212.
29. Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. *Chinese Geographical Science*, 2019, 29: 1001-1010.
30. Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. *Soil Biology and Biochemistry*, 121: 35-42.
31. Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. 2018. Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. *Science of Total Environment*, 635: 423-431.
32. Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. *Plant and Soil*, 428: 279-290.
33. Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. *Agriculture and Forest Meteorology*, 262,

81-88.

34. He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition: New insights into models of incubation and measurement. *Acta Ecologica Sinica*, 2018, 38(11): 4045-4051.
35. Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. *Soil Biology & Biochemistry*, 106: 18-27.
36. Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China's forests and grasslands. *Global Change Biology*, 23: 3393-3402.
37. Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. *Geoderma*, 275: 67-73.
38. Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. *Journal of Geophysical Research: Biogeosciences*, 121: 399-410.
39. He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. *Ecology and Evolution*, 3: 5045-5054.